Abstract

The state of matter within a fluid layer near a critical point differs profoundly in many aspects from states further removed from the critical point. The interfacial tension tends to vanish, the interface thickens, and long-range concentration fluctuations exist. Because of these effects, critical phenomena have been investigated as possible sources of instability in thin films. Shear-field coalescence studies have been performed between phases of a simple ternary system containing no surfactant as a function of distance from a critical point. The coalescence efficiency was measured as a function of temperature through time dependent photomicrographic analysis of emulsion samples within a shear-field coalescence cell. The apparatus, procedure, and analysis are outlined. No evidence was found for the promotion of coalescence by critical phenomena for values of reduced temperature, T r = ( T − T c)/ T c, down to 4×10 −4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call