Abstract

The Hele-Shaw cell involves two immiscible fluids separated by an interface. Possible topology changes in the interface are investigated. In particular, we ask whether a thin neck between two masses of the fluid can develop, get thinner, and finally break. To study this, we employ the lubrication approximation, which implies for a symmetrical neck that the neck thickness h obeys ${\mathit{h}}_{\mathit{t}}$+(${\mathit{hh}}_{\mathit{x}\mathit{x}\mathit{x}}$${)}_{\mathit{x}}$=0. The question is whether, starting with smooth positive initial data for h, one can achieve h=0, and hence a possible broken neck within a finite time. One possibility is that, instead of breaking, the neck gets continually thinner and finally goes to zero thickness only at infinite time. Here, we investigate one set of initial data and argue that in this case the system does indeed realize this infinite-time breakage scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.