Abstract

AbstractShort glass fiber (SGF) reinforced polypropylene composites toughened with styrene‐ethylene butylene‐styrene (SEBS) or maleated SEBS (SEBS‐g‐MA) triblock copolymer were injection molded. Charpy drop‐weight impact properties and the impact essential work of fracture (EWF) of the SGF/SEBS/PP and SGF/SEBS‐g‐MA/PP hybrids were investigated. Drop‐weight impact results revealed that the SGF/SEBS/PP hybrid exhibits higher impact strength than the SGF/SEBS‐g‐MA/PP hybrid at low impact speeds. This was derived from the pull‐out of fibers from the SGF/SEBS/PP hybrid. At high impact speeds, the impact strength of the SGF/SEBS‐g‐MA/PP hybrid was slightly higher than that of the SGF/SEBS/PP hybrid. Impact EWF measurements showed that the hybrids only exhibit specific essential work (We) at a high impact speed of 3 ms−1. The non‐essential work does not occur in the hybrids under high impact rate loading conditions. Moreover, SEBS or SEBS‐g‐MA addition was beneficial in enhancing the high‐rate specific essential work of the SGF/SEBS/PP and SGF/SEBS‐g‐MA/PP hybrid composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call