Abstract

To drop a humanoid robot with a parachute from an airplane is one of the promising ways of delivering robots to a disaster site, and this research has focused on how to absorb parachute landing shock. Two large impacts were observed in one drop test using a small one-legged robot in our previous experiment. The second peak could be reduced by the shock absorbing motion, but the first peak did not change dramatically even if the landing posture was changed. Therefore, this paper forces on how to reduce the first impact acceleration and discusses on effect of cushioning material and servo gain on the impact. It was found that the difference in the hardness of the cushioning material greatly influences the impact acceleration. There was a difference in impact acceleration more than twice between a soft cushion and a hard cushion. On the other hand, impact absorption effect by change of servo gain of robot's actuators was minor. Therefore, it is concluded that flexibility with hardware is also necessary for joints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.