Abstract
A cytocompatible inkjet bioprinting approach that enables the use of a variety of bioinks to produce hydrogels with a wide range of characteristics is developed. Stabilization of bioinks is caused by horseradish peroxidase (HRP)-catalyzed cross-linking consuming hydrogen peroxide (H2 O2 ). 3D cell-laden hydrogels are fabricated by the sequential dropping of a bioink containing polymer(s) cross-linkable through the enzymatic reaction and H2 O2 onto droplets of another bioink containing the polymer, HRP, and cells. The ≈95% viability of enclosed mouse fibroblasts and subsequent elongation of the cells in a bioprinted hydrogel consisting of gelatin and hyaluronic acid derivatives suggest the high cytocompatibility of the developed printing approach. The existence of numerous polymers, including derivatives of polysaccharides, proteins, and synthetic polymers, cross-linkable through the HRP-catalyzed reaction, means the current approach shows great promise for biofabrication of functional and structurally complex tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.