Abstract

In this study, we examined the impacts of a millimeter sized water drop hitting a layer of uniformly distributed particles on a hydrophilic/hydrophobic glass slide. A ring/disc structure without particles was formed and modified by two mechanisms: pushout and pullback. The pushout factor dominated the process when the drop hit on the hydrophilic glass slide, while the pullback factor played a decisive role during impact on the hydrophobic surface. The rebound of a drop on the hydrophobic surface formed a disc-shaped ring. We showed that the ratio of the effects of these two factors on the ring/disc width were independent from the impact speed, in both experimental and scaling analyses. Our results also suggested that higher hydrophobicity of a water drop on the hydrophobic glass slide, instead of a polymethyl methacrylate (PMMA) particle surface, resulted in a lower maximum spreading distance when the drop hit the PMMA particle layer on a hydrophobic surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.