Abstract

Drop impact onto a thin liquid film of another liquid is observed and characterized using a high-speed video system. A new mode of splash – a complete, simultaneous corona detachment – has been observed, which is the result of the lamella breakup near the wall film. The abrupt outward and upward displacement of the lamella leads to an extreme stretching of the corona wall, resulting in its rapid thinning and a rupture. This rupture triggers propagating Taylor–Culick rims, which rapidly spread, meet and, thus, undercut simultaneously the entire corona, resulting in its detachment. Special experiments with the spreading corona impingement onto a fixed needle, supplement the physical evidence of the above-mentioned mechanism. A self-consistent theory of the observed phenomena is proposed and compared with experiments, exhibiting good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.