Abstract
The impact of drops on a porous surface with high contact-angle hysteresis and gas discharge is studied. Four different impact modes, ranging from complete repulsion to fast immobilization of a drop on the surface, are identified and mapped in a space spanned by the pressure difference of the gas across the porous surface and the impact Weber number of the drop. The most remarkable aspect of the dynamics is the transformation of a drop into a bubble, which occurs when a drop just overcomes the repulsion by the gas flow and wets the surface. The transition to the regime in which a drop is transformed to a bubble is well described by a simple scaling relationship based on a balance between inertia and the repulsive force due to the gas flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.