Abstract

The spreading dynamics of Newtonian liquids have been extensively studied in hydrophilic and hydrophobic surfaces and its behavior has been extensively explored over the last years. However, drop impact of Non-Newtonian liquids still needs further study. Luu and Forterre (J. Fluid Mech., 632, 2009) successfully found scaling laws for yield-stress fluids on hydrophilic surfaces. They also uncovered interesting and yet unexplained regimes when the impact was performed on a superhydrophobic surface. In this work, we perform drop impact experiments on micro-patterned surfaces with two types of non-Newtonian liquids: one showing shear-thickening behavior and another one showing shear-thinning. Our results show that a typical shear-thickening liquid as cornstarch -at least a the relatively low concentration of 30\%w/w- spreads according to the scaling laws of Newtonian liquids, whereas visco-elastic liquids as Carbopol behave as predicted by Luu and Forterre for impact on hydrophilic surfaces, but show different scaling laws when they impact on superhydrophobic surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.