Abstract

The formation of drops resulting from the breakup of an axisymmetric Newtonian liquid jet injected vertically into another immiscible Newtonian liquid at various Reynolds numbers is investigated here. The full transient from startup to breakup into drops was simulated numerically by solving the time-dependent axisymmetric equations of motion and continuity using a combination of the volume-of-fluid (VOF) and continuous-surface-force (CSF) methods. The numerical simulation results compare well with previous experimental data and are significantly more accurate than previous simplified analyses based on drop formation before and after jetting over a wide range of conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.