Abstract

We design a rod-type drop filter (RTDF) in a two-dimensional photonic crystal (2D PhC) employing self-collimation (SC) effect. The perfect 2D PhC consists of a square-lattice of cylindrical silicon rods in air. The dielectric constant and the radius of host rods are e=12.25 (correspondingly the refractive index n = 3.5) and r =0.40 a respectively, where a is the lattice constant. In such a PhC, self-collimation phenomenon occurs for transverse-magnetic (TM) light beams with frequencies between 0.176 c/a and 0.192 c/a . The proposed RTDF based on a self-collimation ring resonator (SCRR) consists of two beam splitters and two mirrors. The performances of the SCRR are investigated with the finite-difference time-domain (FDTD) simulation technique. The calculation results show that the transmissivity spectrum at the drop port has nearly equal peak spacing which will decreases when the geometrical length of the SCRR is increased. Moreover, the full width at half maximum (FWHM) and thus quality (Q) factor of peaks can be easily tuned by changing the reflectivity of two beam splitters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.