Abstract

We study the impact of a fluid drop onto a planar solid surface at high speed so that at impact, kinetic energy dominates over surface energy and inertia dominates over viscous effects. As the drop spreads, it deforms into a thin film, whose thickness is limited by the growth of a viscous boundary layer near the solid wall. Owing to surface tension, the edge of the film retracts relative to the flow in the film and fluid collects into a toroidal rim bounding the film. Using mass and momentum conservation, we construct a model for the radius of the deposit as a function of time. At each stage, we perform detailed comparisons between theory and numerical simulations of the Navier–Stokes equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call