Abstract

We have performed calculations of the room-temperature thermal conductivity of oxygen contaminated aluminium nitride (AlN) by employing the Callaway model with a detailed account of three-phonon scattering processes. The role of Al vacancy and O substitution of N has been examined in the form of extended defects (clusters) and point defects. Our work provides support for the theoretical model proposed by Harris et al. [Phys. Rev. B. 47, 5428 (1993)] to explain the experimentally observed drop in the conductivity upon UV irradiation and its recovery upon UV removal and subsequent illumination of the sample with visible light at room temperature. With the reported oxygen concentration in the sample, the scattering of phonons from oxygen-related extended defects is found to be ineffective. Within the picture presented by Harris et al., the point impurity scattering parameter increases by around 17% upon UV irradiation of the sample at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.