Abstract

In this letter, we investigate the impact of periphery, width, length and area on the external quantum efficiency (EQE) of stripe-type InGaN-based red micro-light-emitting diodes (µLEDs). A longer periphery resulted in a higher light extraction efficiency () via the sidewall regardless of the area of the µLEDs. However, as the injection current increased a somewhat larger efficiency droop was observed at the longer periphery due to current crowding. Additionally, larger µLEDs experienced more self-heating than smaller ones, resulting in a red shift of wavelengths and a larger efficiency droop. When the current density exceeded 100 A cm−2, the EQE ratio of smaller-area μLEDs to larger-area ones increased significantly due to the difference in efficiency droop. Besides, a short light propagation length and a long emission width yielded a higher . Hence, the periphery, width, length and area of the µLEDs determine EQE, which provides insight into the pixel design of µLED displays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call