Abstract

Abstract The field of Civil Engineering has lately gained increasing interest in Unmanned Aerial Vehicles (UAV), commonly referred to as drones. Due to an increase of deteriorating bridges according to the report released by the American Society of Civil Engineers (ASCE), a more efficient and cost-effective alternative for bridge inspection is required. The goal of this paper was to analyze the effectiveness of drones as supplemental bridge inspection tools. In pursuit of this goal, the selected bridge for inspection was a three-span glued-laminated timber girder with a composite concrete deck located near the city of Keystone in the state of South Dakota (SD). A drone, a Da-Jiāng Innovations (DJI) Phantom 4, was utilized for this study. Also, an extensive literature review to gain knowledge on current bridge inspection techniques using drones was conducted. The findings from the literature review served as the basis for the development of a five-stage drone-enabled bridge inspection methodology. A field inspection utilizing the drone was performed following the stages of the methodology, and the findings were compared to current historical inspection reports provided by the SD Department of Transportation (SDDOT). Quantified data using the drone such as a spalled area of 0.18 m2, which is identical to the measurement provided by the SDDOT (0.3 m by 0.6 m), demonstrated the efficiency of the drone to inspect the bridge. This study detailed drone-enabled inspection principles and relevant considerations to obtain optimum data acquisition. The field investigation of the bridge demonstrated the image quality and damage identification capabilities of the drone to perform bridge inspection at a lower cost when compared to traditional methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.