Abstract
In recent years, we have witnessed a surge in mobile devices such as smartphones, tablets, smart watches, etc., most of which are based on the Android operating system. However, because these Android-based mobile devices are becoming increasingly popular, they are now the primary target of mobile malware, which could lead to both privacy leakage and property loss. To address the rapidly deteriorating security issues caused by mobile malware, various research efforts have been made to develop novel and effective detection mechanisms to identify and combat them. Nevertheless, in order to avoid being caught by these malware detection mechanisms, malware authors are inclined to initiate adversarial example attacks by tampering with mobile applications. In this paper, several types of adversarial example attacks are investigated and a feasible approach is proposed to fight against them. First, we look at adversarial example attacks on the Android system and prior solutions that have been proposed to address these attacks. Then, we specifically focus on the data poisoning attack and evasion attack models, which may mutate various application features, such as API calls, permissions and the class label, to produce adversarial examples. Then, we propose and design a malware detection approach that is resistant to adversarial examples. To observe and investigate how the malware detection system is influenced by the adversarial example attacks, we conduct experiments on some real Android application datasets which are composed of both malware and benign applications. Experimental results clearly indicate that the performance of Android malware detection is severely degraded when facing adversarial example attacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.