Abstract
Android is the most popular mobile operating system, making it the main target of malware attacks. Machine learning-based attack detection techniques have recently emerged as promising methods that relies heavily on particular features to classify malware. Despite machine learning-based malware detectors having hundreds of features, attackers can use feature-related expertise to generate malware variants to avoid detection. Therefore, the Android security team must constantly develop novel features to detect suspicious attacks. This paper proposes a novel malware detection method called Droid-MCFG that combines the Android features of manifest and Control Flow Graph (CFG). First, reverse engineering tools are used to mine manifest files and Java source codes from Android Package Kit (APK). Second, to represent Android apps with elevated features, we develop a features selection method that retrieves API calls and API sequences from CFGs. The API calls and manifest information are then combined to produce digital fingerprints of Android app actions. Third, a transfer learning approach based on word2vec is developed to extract trained features from digital fingerprints. To thoroughly analyze the novel features, the word2vec is fine-tuned with random, static, and dynamic strategies. Finally, the multi-head Temporal Convolutional Network (TCN) is designed to identify malware based on fine-tuned features. The TCN employs casual convolutions and dilations due to its temporality and broad receptive fields, making it very responsive to API-call sequences and malware activities in the manifest file. The proposed method achieves a classification accuracy of 96.24% using the CICInvesAndMal2019 dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.