Abstract

Minimizing the reset discharge produced under an MgO-cathode condition and eliminating the wall charges accumulated on the address electrode prior to the reset period are the key factors involved in reducing temporal dark image sticking. Thus, based on the perceived luminance, new driving waveforms that can prohibit an MgO-cathode induced reset discharge or erase the wall charges accumulated on the address electrode prior to the reset period are examined for the complete elimination of temporal dark image sticking without deteriorating the address discharge characteristics. As a result of monitoring the difference in the infrared emission and perceived luminance between the cells with and without image sticking, the proposed driving waveform was shown to effectively remove temporal dark image sticking without deteriorating the address discharge characteristics

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.