Abstract

We studied the effect of the driving voltage of frequencies 4, 7, and 10 kHz and two different active electrode setups on electrical properties, ozone production, and UV radiation of wavelengths 320–420 nm of the dielectric barrier discharge in air. The first active electrode setup comprised the strip electrode made from the copper foil. The second setup comprised the stainless steel wire mesh electrode with square cells. The ozone concentration, as well as the ozone production yield, is higher for the discharge with the strip active electrode setup than for the discharge with the mesh active electrode set up. The increased frequency decreases the voltage required to obtain maximum ozone concentration. The intensity of UV radiation is higher for the discharge with the mesh active electrode setup than for the discharge with the strip active electrode setup for all investigated frequencies. The intensity of UV radiation at a particular voltage depending on the frequency and active electrode setup sharply increases. The high concentrations of ozone produced by the discharge with the strip active electrode setup are accompanied by lower intensities of generated UV radiation. For the discharge with the mesh active electrode setup, the situation is reversed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.