Abstract

A method of computing driving tractions for phase transformations is presented. The driving traction calculation requires evaluating the jump in the displacement gradient and the average stress acting across the interface. A bimaterial Green's function is used in a boundary element formulation for the calculation. The Green's function satisfies all interface boundary conditions for the bimaterial providing an efficient formulation for evaluating the necessary jump and average interface terms. We derive a boundary integral equation for calculating the driving traction and apply the developed numerical tool to driving traction calculations in copper-aluminum-nickel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.