Abstract

Due to the advantages of their drive configuration form, skid-steering vehicles with independent wheel drive systems are widely used in various special applications. However, obtaining a reasonable distribution of the driving torques for the coordinated control of independent driving wheels is a challenging problem. In this paper, we propose a torque distribution strategy based on the Knowledge-Assisted Deep Deterministic Policy Gradient (KA-DDPG) algorithm, in order to minimize the desired value tracking error as well as achieve the longitudinal speed and yaw rate tracking control of skid-steering vehicles. The KA-DDPG algorithm combines knowledge-assisted learning methods with the DDPG algorithm, within the framework of knowledge-assisted reinforcement learning. To accelerate the learning process of KA-DDPG, two assisted learning methods are proposed: a criteria action method and a guiding reward method. The simulation results obtained, considering different scenarios, demonstrate that the KA-DDPG-based torque distribution strategy allows a skid-steering vehicle to achieve high performance, in tracking the desired value. In addition, further simulation results, also, demonstrate the contributions of knowledge-assisted learning methods to the training process of KA-DDPG: the criteria action method speeds up the learning speed by reducing the agent’s random action selection, while the guiding reward method achieves the same result by sharpening the reward function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call