Abstract

In Europe, road transport accounts for more than 71 % of transport-related CO2 emissions with cars accounting for 73 % of passenger traffic and the majority of greenhouse gas (GHG) related emissions. As part of the European strategies until 2030 and 2050, the European Commission’s (EC) White Paper BRoadmap to a Single European Transport Area Towards a competitive and resource efficient transport system^ (EC [1]) points out the need to reduce GHG emissions from transport by at least 60 % until middle of the century (2050) with respect to 1990 levels. Until 2030, the goal is for transport to reduce GHG emissions by around 20 % with respect to 2008 levels. These decarbonisation targets impose significant economical, social and technological challenges. When moving towards a low carbon economy, electromobility is seen as a key component of the agenda for sus ta inable mobi l i ty in Europe . By 2050, Bconventionally fuelled vehicles^ (vehicles using nonhybrid, internal combustion engines) are expected to be banned from cities giving place to other technological options such as electric vehicles powered by electricity. These can make use of renewable energy sources which will reduce the carbon footprint from a life cycle analysis perspective. Recently, the European Commission adopted the Strategic Energy Technology Plan (SET Plan) with the aim to ensure EU’s leadership in the development and deployment of low carbon energy technologies in a costeffective way (EC [2]). Battery electric vehicles (BEVs), together with plug-in hybrid vehicles, only account for 0.5 % of the total new vehicle registrations in the EU-27 (EEA [4]). The use of renewable energy sources in the electricity production mix is important towards decarbonisation of the whole cycle: the Well-to-Wheel (WtW) cycle comprises the entire chain of production and usage of vehicles, the Well-to-Thank (WtT) and the Tank-to-Wheel (TtW) emissions. However, the use of renewable electricity in road transport remains low, around 13 kilotonnes oil equivalent (ktoe) (EEA [3]). Several barriers can be found in the literature as possible factors to justify the above panorama. The paper by Buhne, et al. in this special issue presents an overview and points out the obstacles to overcome to assure a higher market penetration of electric vehicles. On the one hand, the additional costs due to development of smart grids, intelligent electricity distribution systems and other infrastructure-related costs represent an additional investment in terms of construction and maintenance costs for road developers and managers (typically the public administration). On the other hand, the high purchase costs of electric vehicles, the limits imposed by low availability of charging infrastructure and its coverage, the charging time and the limited battery range often do not cope with main requirements of drivers’ daily activity patterns. Subjective factors such as those related to psychological aspects such as range anxiety and aesthetic variables have been proved to be a barrier, as well. Addressing these barriers will be important to increase the competitiveness of e-vehicles in Europe as pointed out by Figenbaum, et al. However, the social competitiveness of BEVs will depend to some extent on the evolution of price of fuels and electricity as well as the battery costs. Also, the internalisation of external costs included in the This article is part of the Topical Collection on Driving Societal Changes towards an Electro-mobility Future

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.