Abstract

In the framework of the nonlinear Λ-model we investigate propagation of a slow-light soliton in atomic vapours and Bose–Einstein condensates. The velocity of the slow-light soliton is controlled by a time-dependent background field created by a controlling laser. For a fairly arbitrary time dependence of the field we find the dynamics of the slow-light soliton inside the medium. We provide an analytical description for the nonlinear dependence of the velocity of the signal on the controlling field. If the background field is turned off at some moment of time, the signal stops. We find the location and shape of the spatially localized memory bit imprinted into the medium. We show that the process of writing optical information can be described in terms of scattering data for the underlying scattering problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.