Abstract

Fibrocartilaginous entheses are structurally complex tissues that translate load from elastic ligaments to stiff bone via complex zonal gradients in the organization, mineralization, and cell phenotype. Currently, these complex gradients necessary for long-term mechanical function are not recreated in soft tissue-to-bone healing or engineered replacements, contributing to high failure rates. Previously, we developed a culture system that guides ligament fibroblasts to develop aligned native-sized collagen fibers using high-density collagen gels and mechanical boundary conditions. These constructs are promising ligament replacements, however functional ligament-to-bone attachments, or entheses, are required for long-term function in vivo. The objective of this study was to investigate the effect of compressive mechanical boundary conditions and the addition of beta-tricalcium phosphate (βTCP), a known osteoconductive agent, on the development of zonal ligament-to-bone entheses. We found that compressive boundary clamps, that restrict cellular contraction and produce a zonal tensile-compressive environment, guide ligament fibroblasts to produce 3 unique zones of collagen organization and zonal accumulation of glycosaminoglycans (GAGs), type II, and type X collagen. Ultimately, by 6 weeks of culture these constructs had similar organization and composition as immature bovine entheses. Further, βTCP applied under the clamp enhanced maturation of these entheses, leading to significantly increased tensile moduli, and zonal GAG accumulation, ALP activity, and calcium-phosphate accumulation, suggesting the initiation of endochondral ossification. This culture system produced some of the most organized entheses to date, closely mirroring early postnatal enthesis development, and provides an in vitro platform to better understand the cues that drive enthesis maturation in vivo. Statement of significanceLigaments are attached to bone via entheses. Entheses are complex tissues with gradients in organization, composition, and cell phenotype. Entheses are necessary for proper transfer of load from ligament-to-bone, but currently are not restored with healing or replacements. Here, we provide new insight into how tensile-compressive boundary conditions and βTCP drive zonal gradients in collagen organization, mineralization, and matrix composition, producing tissues similar to immature ligament-to-bone attachments. Collectively, this culture system uses a bottom-up approach with mechanical and biochemical cues to produce engineered replacements which closely mirror postnatal enthesis development. This culture system is a promising platform to better understanding the cues that regulate enthesis formation so to better drive enthesis regeneration following graft repair and in engineered replacements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call