Abstract

Non-Markovian effects arising in open quantum system evolution have been a subject of increasing interest over the past decade. One of the most appealing features of non-Markovianity (NM) is that it captures scenarios where loss of information and coherence are reversible, and thus a temporary backflow of information from the environment to the system is possible. In this work we study the interplay between the degree of non-Markovianity and the action of time-dependent control fields in an open two-level quantum system. We find that periodical modulation of a field acting solely on the system can greatly enhance the degree of non-Markovianity with respect to the undriven case. We show that this effect is present only when the coupling between system and environment is weak. Remarkably, the enhancement disappears at strong coupling, which is usually the regime where non-Markovian effects are expected to be more pronounced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.