Abstract
Based on the concept of an energy pump, water transportation in a carbon nanotube (CNT) is studied by molecular dynamics simulations. The influences of CNT pretwist angle, water mass, environmental temperature, CNT diameter, CNT channel length, and CNT channel restrain condition on driving force and transportation efficiency are investigated. It is found that in order to initiate the transportation, the pretwist angle must be larger than certain threshold, 80 deg, for the case of one water molecule in a restrained (8,0) CNT. Furthermore, driving force decreases with increasing water mass and it is more efficient to transport multiple water molecules than one water molecules. The water molecule is found to have higher degrees of collisions in a (8,0) CNT in elevated environmental temperature. By comparing three CNT channel lengths, the channel length of 19.80 nm is identified as a faster and more efficient transporter in an unrestrained (8,8) CNT. Finally, molecular dynamics (MD) simulation indicates that a water molecule can only be transported below 300 K in an unrestrained (8,8) CNT due to the large friction caused by severely deformed channel and the Brownian motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Nanotechnology in Engineering and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.