Abstract
AbstractCrystal growth rates are notoriously difficult to predict and even experimental data are often inconsistent. By allowing for mass and energy diffusion through the molecular and thermal layers surrounding a growing crystal and for the heat effect of crystallization, a new model of crystal growth from solution is proposed and applied to crystallization of potassium chloride from aqueous solution. The driving force for crystal growth was calculated using the solubility at the interface temperature in contrast to the conventional one based on bulk temperature. A positive heat effect at the crystal interface as well as the resistances to the mass and energy transfer processes to and from the crystal surface can reduce the conventional driving force for crystal growth by more than 20 %.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.