Abstract
The rising number of traffic accidents has become a major issue in our daily life, which has attracted the concern of society and governments. To deal with this issue, in our previous study, we have designed a real-time driving fatigue detection system using power spectrum density and sample entropy. By using the wireless technology and dry electrodes for EEG collection, we further integrated virtual reality simulated driving environment, which made our study more applicable to realistic settings. However, the high accuracy of classification for driving fatigue has not been obtained. To measure the time series complexity of the EEG signal, we proposed a fusion entropy (sample entropy, approximate entropy, and spectral entropy) analysis method of EEG and EOG. First, a sample entropy was applied for feature extraction from the horizontal and vertical EOG. Second, an approximate entropy, sample entropy, and spectral entropy features of each sub-band of EEG are extracted. Third, feature fusion for sub-band is performed by canonical correlation analysis (CCA). Finally, the features of EOG and EEG are classified using a relevant vector machine (RVM). Twenty-two subjects participated in the driving fatigue experiments for a duration of 90 min. The results demonstrated that the fusion entropy analysis combining EOG and EEG could provide an alternative method for driving fatigue detection, and the average accuracy rate was up to 99.1 ± 1.2%. The authors further analyzed the effect of feature fusion in four sub-bands (δ, α, β and θ) and compared with every single sub-band on classification performance, it is proved that the former is superior to the latter presenting the proposed method can provide effective indicators for driving fatigue detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.