Abstract

In the context of climate change, extreme rainfall events have greatly increased the frequency and risk of flash floods in the Yellow River Basin. In this study, the heavy rainfall and flash flood processes were studied as a system. Taking the driving factors of the heavy rainfall causing the flash floods as the main focus, the key factors of the heavy rainfall causing typical flash flood processes were identified, and the driving mechanism by which the heavy rainfall caused flash floods was revealed. Through comparative analysis of the rainfall related to 13 floods with peak discharges of greater than 2000 m3/s since measurements began at Baijiachuan hydrological station, it was found that different rainfall factors played a major driving role in the different flood factors. The factor that had the largest impact on the peak discharge was the average rainfall intensity; the factor that had the largest impact on the flood volume was the rainfall duration; and the factor that had the largest impact on the sediment volume was the maximum 1 h rainfall. The ecological construction of soil and water conservation projects on the Loess Plateau has had obvious peak-cutting and sediment-reducing effects on the flood processes driven by medium- and low-intensity rainfall events, but for high-intensity flash floods, the flood-reducing and sediment-reducing effects of these projects have been smaller. Therefore, despite the background of continuous ecological improvement on the Loess Plateau, the possibility of floods with large sediment loads occurring in the middle reaches of the Yellow River still exists.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call