Abstract

Site contamination has caused serious harm to human health and the ecological environment, so understanding its spatial and temporal distribution patterns is the basis for contamination assessment and site remediation. For this reason, this study analyzed the spatial-temporal distribution patterns of organic pollutants and their driving factors in the Yangtze River Delta based on site sampling data using the optimal-scale geographical detector. The analysis results showed that:① There was a significant scale effect in the spatial distribution of organic pollutants in the Yangtze River Delta, and its optimal geographic detection scale grid was 8 000 meters. ② The main control factor of the spatial distribution of pollutants in the Yangtze River Delta originated mostly from the biological field, followed by the chemical field. ③ At the depth of 0-20 cm of soil, the explanatory power of sucrase content, urease content, microbial nitrogen amount, total nitrogen content, and cation exchange amount were stronger for the spatial distribution of organic pollutants. At the soil depth of 20-40 cm, the factors with stronger explanatory power on the spatial distribution of organic pollutants were soil moisture, population, and total nitrogen content. With the deepening of soil depth, the explanatory power of the factors of the hydrodynamic field increased. ④ Population, total nitrogen content, and polyphenol oxidase content had stronger explanatory power for the spatial distribution of organic pollutants in the spring. The spatial distribution of organic pollutants was more complex in autumn, and the factors showed stronger enhanced-nonlinear and enhanced-bi phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.