Abstract

T cells that have been genetically modified, activated, and propagated ex vivo can be infused to control tumor progression in patients who are refractory to conventional treatments. Early-phase clinical trials demonstrate that the tumor-associated antigen (TAA) CD19 can be therapeutically engaged through the enforced expression of a chimeric antigen receptor (CAR) on clinical-grade T cells. Advances in vector design, the architecture of the CAR molecule especially as associated with T-cell co-stimulatory pathways, and understanding of the tumor microenvironment, play significant roles in the successful treatment of medically fragile patients. However, some recipients of CAR(+) T cells demonstrate incomplete responses. Understanding the potential for treatment failure provides a pathway to improve the potency of adoptive transfer of CAR(+) T cells. High throughput single-cell analyses to understand the complexity of the inoculum coupled with animal models may provide insight into the therapeutic potential of genetically modified T cells. This review focuses on recent advances regarding the human application of CD19-specific CAR(+) T cells and explores how their success for hematologic cancers can provide a framework for investigational treatment of solid tumor malignancies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.