Abstract

The advancement of vehicular technologies for automated driving will lead to a mixed traffic flow that depends on the interaction between automated vehicles (AVs) and manually driven vehicles (MVs) because the market penetration rate (MPR) of AVs will gradually increase over time. Because automated driving environments provide us with a valuable opportunity for controlling individual vehicle operation, a strategic policy for managing AVs operation is expected to enhance the performance of the traffic stream. Therefore, the operation of AVs needs to be properly determined to cope with various traffic and road conditions and thereby facilitate smooth and effective vehicle interactions. This study proposed a novel traffic management strategy in automated driving environments by adjusting the driving aggressiveness of AV operation, defined as automated driving aggressiveness (AuDA). VISSIM microscopic simulation experiments were conducted to derive the proper AuDAs to enhance both the traffic safety and the mobility performance. Traffic conflict rates and average travel speeds were used as indicators for the performance of safety and operations. While conducting the simulations, the level of service (LOS) and MPR of the AVs were also considered. In addition, the relationship between key variables for adaptive cruise control (ACC) operations and AuDA policies was explored to better support the understanding of how the proposed methodology works in practice. Promising results showed that the proposed methodology would be effective in optimizing the performance of mixed traffic conditions. Furthermore, the outcome will be valuable in developing various policies and guidelines to manage the operation of AV in automated driving environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.