Abstract

Excitation of single molecules with electrons tunneling between a sharp metallic tip of a scanning tunneling microscope and a metal surface is one way to study and control dynamics of molecules on surfaces. Electron tunneling induced dynamics may lead to hopping, rotation, molecular switching, or chemical reactions. Molecular motors that convert rotation of subgroups into lateral movement on a surface can in principle also be driven by tunneling electrons. For such surface-bound motor molecules the efficiency of motor action with respect to electron dose is still not known. Here, the response of a molecular motor containing two rotor units in the form of overcrowded alkene groups to inelastic electron tunneling has been examined on a Cu(111) surface in ultrahigh vacuum at 5 K. Upon vibrational excitation, switching between different molecular conformations is observed, including conversion of enantiomeric states of chiral conformations. Tunneling at energies in the range of electronic excitations causes activation of motor action and movement across the surface. The expected unidirectional rotation of the two rotor units causes forward movements but with a low degree of translational directionality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call