Abstract

Submicron particle matter (PM1) that rapidly reaches exceedingly high levels in several or more hours in the North China Plain (NCP) has been threating~400 million individuals' health for decades. The precise cause of the rapid rise in PM1 remains uncertain. Based on sophisticated measurements in PM1 characterizations and corresponding boundary-layer (BL) meteorology in the NCP, it demonstrates that this rising is mainly driven by BL meteorological variability. Large increases in near-ground inversions and decreases in vertical heat/momentum fluxes during the day-night transition result in a significant reduction in mixing space. The PM1 that is vertically distributed before accumulates at the near-ground and then experiences a rapid rise. Besides meteorological variability, a part of the rise in organics is ascribed to an increase of coal combustion at midnight. The daily-based accumulation of PM1 is attributed to day-to-day vertical meteorological variability, particularly diminishing mixing layer height exacerbated by aerosol-radiation feedback. Resolved by a multiple linear regression model, BL meteorological variability can explain 71% variances of PM1. In contrast, secondary chemical reactions facilitate the daily-based accumulation of PM1 rather than the rapid rise. Our results show that BL meteorological variability plays a dominant role in PM1 rising and day-to-day accumulation, which is crucial for understanding the mechanism of heavy pollution formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.