Abstract

Mountain ecosystems contribute substantially to global carbon and nitrogen biogeochemical cycles. Although soil respiration, and microbial biomass, activities and diversity have been extensively studied at different altitudes worldwide, little is known on causal link between environmental drivers, microbial functions and emissions of greenhouse gases (GHGs) in soils of different elevation. Here, by measuring in-situ GHG fluxes, soil properties, organic matter (OM) quality, microbial enzyme activities, biomass and gene abundances, we investigate factors that control long-term GHG fluxes (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)) in natural soils with an elevational gradient of ~2400 m across Switzerland with different vegetation covers. Results showed that CO2 and N2O fluxes increased significantly with elevation from top to the treeline, but slightly decreased from the treeline to bottom. Contrastingly, no significantly patterns of CH4 fluxes across the whole elevation were observed. Spearman correlations revealed that the increased CO2 and N2O fluxes were highly correlated to the significant increases in soil temperature, moisture, organic matter (OM) quantity and quality (increases in the relative contribution of humic-like vs. fresh-like OM), bacterial and fungal biomass and gene abundances. Structural equation model, hierarchical partitioning and random forest regression further confirmed that, in addition to soil temperature and moisture, SOM quantity and quality are the most driving factors of microbial activity and respiration. Our study highlights the importance of OM quality as a driving factor of soil microbial metabolic activities in Alpine soils across the elevation, and predicts a potential increase in GHG emissions in high-altitudinal soils with the expected upwarding-shifting treeline under climate warming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.