Abstract
To manage and treat chronic fungal diseases effectively, we require an improved understanding of their complexity. There is an increasing appreciation that chronic infection populations are often heterogeneous due to diversification and drift, even within a single microbial species. Genetically diverse populations can contribute to persistence and resistance to treatment by maintaining cells with different phenotypes capable of thriving in these dynamic environments. In chronic infections, fungal pathogens undergo prolonged challenges that can drive trait selection to convergent adapted states through restricted access to critical nutrients, assault by immune effectors, competition with other species, and antifungal drugs. This review first highlights the various genetic and epigenetic mechanisms that promote diversity in pathogenic fungal populations and provide an additional barrier to assessing the actual heterogeneity of fungal infections. We then review existing studies of evolution and genetic heterogeneity in fungal populations from lung infections associated with the genetic disease cystic fibrosis. We conclude with a discussion of open research questions that, once answered, may aid in diagnosing and treating chronic fungal infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.