Abstract

<p>The state of functioning (posture) of a driver at the wheel of a car involves a complex set of psychological, physiological, and physical parameters. This combination induces fatigue, which manifests itself in repeated yawning, stinging eyes, a frozen gaze, a stiff and painful neck, back pain, and other signs. The driver may fight fatigue for a few moments, but it inevitably leads to drowsiness, periods of micro-sleep, and then falling asleep. At the first signs of drowsiness, the risk of an accident becomes immense. In Morocco, drowsiness at the wheel is the cause of 1/3 of fatal accidents on the freeways. Thus, in this paper, a new hybrid data analysis and an efficient machine learning algorithm are designed to detect the drowsiness of drivers who spend most of their time behind the wheel over long distances (older than 35 years). This analysis is based on a single channel of electroencephalogram (EEG) recordings using time, frequency fast Fourier transform (FFT), and power spectral density (PSD) analysis. To distinguish between the two states of alertness and drowsiness, several features were extracted from each domain (time, FFT, and PSD), and subjected to different classifier architectures to conduct a general comparison and achieve the highest detection accuracy (98.5%) and best time consumption (13 milliseconds).</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.