Abstract

Motorsport athletes experience head acceleration loading during crashes; however, there is limited literature quantifying the frequency and magnitude of these loads, particularly at the grassroots level of the sport. Understanding head motion experienced during crash events in motorsport is necessary to inform interventions to improve driver safety. This study aimed to quantify and characterize driver head and vehicle kinematics during crashes in open-wheel grassroots dirt track racing. Seven drivers (ages 16–22, n = 2 female) competing in a national midget car series were enrolled in this study over two racing seasons and were instrumented with custom mouthpiece sensors. Drivers’ vehicles were outfitted with an incident data recorder (IDR) to measure vehicle acceleration. Forty-one crash events were verified and segmented into 139 individual contact scenarios via film review. Peak resultant linear acceleration (PLA) of the vehicle and PLA, peak rotational acceleration (PRA), and peak rotational velocity (PRV) of the head were quantified and compared across the part of the vehicle contacted (i.e., tires or chassis), the vehicle location contacted (e.g., front, left, bottom), the external object contacted (i.e., another vehicle, wall, or the track), and the principal direction of force (PDOF). The median (95th percentile) PLA, PRA, and PRV of the head and PLA of the vehicle were 12.3 (37.3) g, 626 (1799) rad/s2, 8.92 (18.6) rad/s, and 23.2 (88.1) g, respectively. Contacts with a non-horizontal PDOF (n = 98, 71%) and contact with the track (n = 96, 70%) were common in the data set. Contact to the left side of the vehicle, with the track, and with a non-horizontal PDOF tended to have the greatest head kinematics compared to other factors in each sub-analysis. Results from this pilot study can inform larger studies of head acceleration exposure during crashes in the grassroots motorsports environment and may ultimately support evidence-based driver safety interventions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.