Abstract

To reduce driver gas usage of a pulse detonation engine operating in airbreathing mode, the authors experimentally examined a combination method of a reflecting board and overfilling of the driver gas. This method has the potential to reduce the predetonator diameter by half and shorten the overfilling distance h to the reflecting board position w. Experiments with stoichiometric hydrogen–oxygen and hydrogen–air mixtures as driver and target gases, respectively, showed that the overfilling distance necessary to have a planar detonation wave propagate in a detonation chamber is reduced to 30 mm when a reflecting board is used with a reflecting board clearance of w 10 mm. With an overfilling distance of 30 mm, the transformation of the detonation wave from cylindrical to toroidal did not occur because of the mixing effect of the driver gas and the target gas around the reflecting board. A 100-mm-thick reflecting board prevents the mixing effect, and a successful transformation from cylindrical to toroidal becomes possible with an overfilling distance as small as 17.2 mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.