Abstract
Unstable emotions, particularly anger, have been identified as significant contributors to traffic accidents. To address this issue, driver emotion recognition emerges as a promising solution within the realm of cyber-physical-social systems (CPSS). In this paper, we introduce SVGG, an emotion recognition model that leverages the attention mechanism. We validate our approach through comprehensive experiments on two distinct datasets, assessing the model’s performance using a range of evaluation metrics. The results suggest that the proposed model exhibits improved performance across both datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.