Abstract
Driver cognitive distraction is a hazard state, which can easily lead to traffic accidents. This study focuses on detecting the driver cognitive distraction state based on driving performance measures. Characteristic parameters could be directly extracted from Controller Area Network‐(CAN‐)Bus data, without depending on other sensors, which improves real‐time and robustness performance. Three cognitive distraction states (no cognitive distraction, low cognitive distraction, and high cognitive distraction) were defined using different secondary tasks. NLModel, NHModel, LHModel, and NLHModel were developed using SVMs according to different states. The developed system shows promising results, which can correctly classify the driver’s states in approximately 74%. Although the sensitivity for these models is low, it is acceptable because in this situation the driver could control the car sufficiently. Thus, driving performance measures could be used alone to detect driver cognitive state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.