Abstract
Distracted driving due to cell phone usage is an increasingly costly problem in terms of lost lives and damaged property. Motivated by its impact on public safety and property, several state and federal governments have enacted regulations that prohibit driver mobile phone usage while driving. These regulations have created a need for cell phone usage detection for law enforcement. In this paper, we propose a computer vision based method for determining driver cell phone usage using a near infrared (NIR) camera system directed at the vehicle's front windshield. The developed method consists of two stages, first, we localize the driver's face region within the front windshield image using the deformable part model (DPM). Next, we utilize a local aggregation based image classification technique to classify a region of interest (ROI) around the drivers face to detect the cell phone usage. We propose two classification architectures by using full face and half face images for classification and compare their performance in terms of accuracy, specificity, and sensitivity. We also present a comparison of various local aggregation-based image classification methods using bag-of-visual-words (BOW), vector of locally aggregated descriptors (VLAD) and Fisher vectors (FV). A data set of 1500 images was collected on a public roadway and is used to perform the experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.