Abstract
ABSTRACTUse of cellular phone while driving is one of the top contributing factors that induce traffic crashes, resulting in significant loss of life and property. A dilemma zone is a circumstance near signalized intersections where drivers hesitate when making decisions related to their driving behaviors. Therefore, the dilemma zone has been identified as an area with high crash potential. This article utilizes a logit-based Bayesian network (BN) hybrid approach to investigate drivers' decision patterns in a dilemma zone with phone use, based on experimental data from driving simulations from the National Advanced Driving Simulator (NADS). Using a logit regression model, five variables were found to be significant in predicting drivers' decisions in a dilemma zone with distractive phone tasks: older drivers (50–60 years old), yellow signal length, time to stop line, handheld phone tasks, and driver gender. The identified significant variables were then used to train a BN model to predict drivers' decisions at a dilemma zone and examine probabilistic impacts of these variables on drivers' decisions. The analysis results indicate that the trained BN model was effective in driver decision prediction and variable influence extraction. It was found that older drivers, a short yellow signal, a short time to stop line, nonhandheld phone tasks, and female drivers are factors that tend to result in drivers proceeding through intersections in a dilemma zone with phone use distraction. These research findings provide insight in understanding driver behavior patterns in a dilemma zone with distractive phone tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.