Abstract
Objective Conditional automated driving (SAE level 3) requires the driver to take over the vehicle if the automated system fails. The mental workload that can occur in these takeover situations is an important human factor that can directly affect driver behavior and safety, so it is important to predict it. Therefore, this study introduces a method to predict mental workload during takeover situations in automated driving, using the ACT-R (Adaptive Control of Thought-Rational) cognitive architecture. The mental workload prediction model proposed in this study is a computational model that can become the basis for emerging crash avoidance technologies in future autonomous driving situations. Methods The methodology incorporates the ACT-R cognitive architecture, known for its robustness in modeling cognitive processes and predicting performance. The proposed takeover cognitive model includes the symbolic structure for repeatedly checking the driving situation and performing decision-making for takeover as well as Non-Driving-Related Tasks (NDRT). We employed the ACT-R cognitive model to predict mental workload during takeover in automated driving scenarios. The model’s predictions are validated against physiological data and performance data from the validation test. Results The model demonstrated high accuracy, with an r-square value of 0.97, indicating a strong correlation between the predicted and actual mental workload. It successfully captured the nuances of multitasking in driving scenarios, showcasing the model’s adaptability in representing diverse cognitive demands during takeover. Conclusions The study confirms the efficacy of the ACT-R model in predicting mental workload for takeover scenarios in automated driving. It underscores the model’s potential in improving driver-assistance systems, enhancing vehicle safety, and ensuring the efficient integration of human-machine roles. The research contributes significantly to the field of cognitive modeling, providing robust predictions and insights into human behavior in automated driving tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.