Abstract

The rapid advancement of intelligent assisted driving technology has significantly enhanced transportation convenience in society and contributed to the mitigation of traffic safety hazards. Addressing the potential for drivers to experience abnormal physical conditions during the driving process, an enhanced lightweight network model based on YOLOv5 for detecting abnormal facial expressions of drivers is proposed in this paper. Initially, the lightweighting of the YOLOv5 backbone network is achieved by integrating the FasterNet Block, a lightweight module from the FasterNet network, with the C3 module in the main network. This combination forms the C3-faster module. Subsequently, the original convolutional modules in the YOLOv5 model are replaced with the improved GSConvns module to reduce computational load. Building upon the GSConvns module, the VoV-GSCSP module is constructed to ensure the lightweighting of the neck network while maintaining detection accuracy. Finally, channel pruning and fine-tuning operations are applied to the entire model. Channel pruning involves removing channels with minimal impact on output results, further reducing the model’s computational load, parameters, and size. The fine-tuning operation compensates for any potential loss in detection accuracy. Experimental results demonstrate that the proposed model achieves a substantial reduction in both parameter count and computational load while maintaining a high detection accuracy of 84.5%. The improved model has a compact size of only 4.6 MB, making it more conducive to the efficient operation of onboard computers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.