Abstract
While dissipative Rydberg gases exhibit unique possibilities to tune dissipation and interaction properties, very little is known about the quantum many-body physics of such long-range interacting open quantum systems. We theoretically analyze the steady state of a van der Waals interacting Rydberg gas in an optical lattice based on a variational treatment that also includes long-range correlations necessary to describe the physics of the Rydberg blockade, i.e., the inhibition of neighboring Rydberg excitations by strong interactions. In contrast to the ground state phase diagram, we find that the steady state undergoes a single first order phase transition from a blockaded Rydberg gas to a facilitation phase where the blockade is lifted. The first order line terminates in a critical point when including sufficiently strong dephasing, enabling a highly promising route to study dissipative criticality in these systems. In some regimes, we also find good quantitative agreement of the phase boundaries with previously employed short-range models, however, with the actual steady states exhibiting strikingly different behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.