Abstract
We simulate the motion of a commensurate vortex lattice in a periodic lattice of artificial circular pinning sites having different diameters, pinning strengths, and spacings using the time-dependent Ginzburg-Landau formalism. Above some critical DC current density ${J}_{\mathrm{c}}$, the vortices depin, and the resulting steady-state motion then induces an oscillatory electric field $E(t)$ with a defect ``hopping'' frequency ${f}_{0}$, which depends on the applied current density and the pinning landscape characteristics. The frequency generated can be locked to an applied AC current density over some range of frequencies, which depends on the amplitude of the DC as well as the AC current densities. Both synchronous and asynchronous collective hopping behaviors are studied as a function of the supercell size of the simulated system and the (asymptotic) synchronization threshold current densities determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.