Abstract

A contemporary review on the behavior of driven tunneling in quantum systems is presented. Diverse phenomena, such as control of tunneling, higher harmonic generation, manipulation of the population dynamics and the interplay between the driven tunneling dynamics and dissipative effects are discussed. In the presence of strong driving fields or ultrafast processes, well-established approximations such as perturbation theory or the rotating wave approximation have to be abandoned. A variety of tools suitable for tackling the quantum dynamics of explicitly time-dependent Schrödinger equations are introduced. On the other hand, a real-time path integral approach to the dynamics of a tunneling particle embedded in a thermal environment turns out to be a powerful method to treat in a rigorous and systematic way the combined effects of dissipation and driving. A selection of applications taken from the fields of chemistry and physics are discussed, that relate to the control of chemical dynamics and quantum transport processes, and which all involve driven tunneling events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call