Abstract

The dynamics of spherical particles driven along an interface between two immiscible fluids is investigated asymptotically. Under the assumptions of a pinned three-phase contact line (TCL) and very different viscosities of the two fluids, a particle assumes a tilted orientation. As it moves, it causes a deformation of the fluid interface which is also computed. The case of two interacting driven particles is studied via the linear superposition approximation. It is shown that the capillary interaction force resulting from the particle motion is dipolar in terms of the azimuthal angle and decays with the fifth power of the inter-particle separation, similar to a capillary quadrupole originating from undulations of the TCL. The dipolar interaction is demonstrated to exceed the quadrupolar interaction at moderate particle velocities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.