Abstract

Driven-dissipative many-body systems are difficult to analyze analytically due to their non-equilibrium dynamics, dissipation and many-body interactions. In this paper, we consider a driven-dissipative infinite-range Ising model with local spontaneous emission, which naturally emerges from the open Dicke model in the large-detuning limit. Utilizing an adaptation of the Suzuki-Trotter quantum-to-classical mapping, we develop an exact field-theoretical analysis and a diagrammatic representation of the spin model that can be understood from a simple scattering picture. With this representation, we are able to analyze critical behavior, finite-size scaling and the effective temperature near the respective phase transition. Our formalism further allows a detailed study of the ordered phase where we find a "heating" region within which the effective temperature becomes negative, thereby exhibiting a truly non-equilibrium behavior. At the phase transition, we find two distinct critical behaviors with overdamped and underdamped critical dynamics at generic and weakly-dissipative critical points, respectively. We further show that the underdamped critical behavior is robust against short-range perturbations and is not an artifact of the mean-field nature of the model. To treat such perturbations, we extend our diagrammatic representation to include the coupling to spin waves due to the short-range interactions. The field-theoretical approach and the diagrammatics developed in this work should prove useful in applications to generic short-range driven-dissipative spin systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call